Johann Knechtel


Affiliation:

New York University Abu Dhabi

Country:

UAE


Sessions

03-17
09:30
20min
Trojan Insertion versus Layout Defenses for Modern ICs: Red-versus-Blue Teaming in a Competitive Community Effort
Johann Knechtel

Hardware Trojans (HTs) are a longstanding threat to secure computation. Here, we present a large-scale, first-of-its-kind community effort through red-versus-blue teaming that thoroughly explores the threat of fabrication-time HT insertion. Four independently competing blue teams of 23 IC designers in total had to analyze and fix vulnerabilities of representative IC layouts at the pre-silicon stage, whereas a red team of 3 experts in hardware security and IC design continuously pushed the boundaries of these defense efforts through different HTs and novel insertion techniques. Importantly, we find that, despite the blue teams’ commendable design efforts, even highly-optimized layouts retained at least some exploitable vulnerabilities.

Our effort follows a real-world setting for a modern 7nm technology node and industry-grade tooling for IC design, all embedded into a fully-automated and extensible benchmarking framework. To ensure the relevance of this work, strict rules that adhere to real-world requirements for IC design and manufacturing were postulated by the organizers. For example, not a single violation for timing and design-rule checks were allowed for defense techniques. Besides, in an advancement over prior art, neither red nor blue teams were allowed to use any so-called fillers and spares for trivial attack or defense approaches.

Finally, we release all methods and artifacts: the representative IC layouts and HTs, the devised attack and defense techniques, the evaluation metrics and setup, the technology setup and commercial-grade reference flow for IC design, the encompassing benchmarking framework, and all best results. This full release enables the community to continue exploring this important challenge for hardware security, in particular to focus on the urgent need for further advancements in defense strategies.

Session I - Hardware Trojans
Lecture Hall
03-17
10:10
20min
Hardware Trojan Threats to Cache Coherence in Modern 2.5D Chiplet Systems
Johann Knechtel

Industry is moving towards large-scale hardware systems that bundle processor cores, memories, accelerators, and so on. via 2.5D integration. These components are fabricated separately as chiplets and then integrated using an interposer as an interconnect carrier. This new design style is beneficial in terms of yield and economies of scale, as chiplets may come from various vendors and are relatively easy to integrate into one larger sophisticated system. However, the benefits of this approach come at the cost of new security challenges, especially when integrating chiplets that come from untrusted or not fully trusted, third- party vendors.

In this work, we explore these challenges for modern interposer-based systems of cache-coherent, multi-core chiplets. First, we present basic coherence-oriented hardware Trojan attacks that pose a significant threat to chiplet-based designs and demonstrate how these basic attacks can be orchestrated to pose a significant threat to interposer-based systems. Second, we propose a novel scheme using an active interposer as a generic, secure-by-construction platform that forms a physical root of trust for modern 2.5D systems. The implementation of our scheme is confined to the interposer, resulting in little cost and leaving the chiplets and coherence system untouched. We show that our scheme prevents a range of coherence attacks with low overheads on system performance, ∼4%. Further, we demonstrate that our scheme scales efficiently as system size and memory capacities increase, resulting in reduced performance overheads.

Session I - Hardware Trojans
Lecture Hall